IMPLEMENTASI LOGIKA FUZZY DALAM PENGHINDARAN HAMBATAN ROBOT E-PUCK PADA LINGKUNGAN STATIS

Fauzan Rais Saputra, Rizanurfadli Hadiazzaka, Sahat Ramses Simsay Silalahi, Ardy Seto Priambodo

Abstract


This research compares the performance of two control methods, PID and Fuzzy Logic Controller, in controlling the E-puck robot for navigation and obstacle avoidance. This research aims to determine a more efficient and adaptive method for dealing with dynamic environmental complexity. The research was conducted in a laboratory using an E-puck robot and a Webots simulator. The methods used include observation, interviews, and literature study. The E-puck robot was tested in two simulation arenas with different levels of obstacle complexity. The PID method uses proportional (P), integral (I), and derivative (D) components, while the Fuzzy Logic Controller uses if-then rules based on fuzzy logic. Test results show that the PID method is faster in arenas with fewer obstacles, with an average time of 1 minute 4.5 seconds, compared to Fuzzy Logic, which requires 1 minute 5.4 seconds. However, in arenas with more obstacles, the Fuzzy Logic method is more efficient, with an average time of 1 minute 12.9 seconds, while the PID method requires 1 minute 16.8 seconds. This research concludes that although each control method has advantages and limitations, their combination can offer a more adaptive and efficient solution in dynamic environments. The results of this research significantly contribute to the development of robotics technology and practical applications in various industrial sectors.

Penelitian ini membahas perbandingan kinerja dua metode kendali, PID dan Fuzzy Logic Controller, dalam mengendalikan robot E-Puck untuk navigasi dan penghindaran rintangan. Penelitian ini bertujuan untuk menentukan metode yang lebih efisien dan adaptif dalam menghadapi kompleksitas lingkungan yang dinamis. Penelitian dilakukan di laboratorium menggunakan robot E-puck dan simulator Webots. Metode yang digunakan mencakup observasi, wawancara, dan studi kepustakaan. Robot E-puck diuji di dua arena simulasi dengan tingkat kompleksitas rintangan yang berbeda. Metode PID menggunakan komponen proporsional (P), integral (I), dan derivatif (D), sedangkan Fuzzy Logic Controller menggunakan aturan if-then berbasis logika fuzzy. Hasil pengujian menunjukkan bahwa metode PID lebih cepat di arena dengan rintangan lebih sedikit, dengan rata-rata waktu 1 menit 4,5 detik, dibandingkan Fuzzy Logic yang membutuhkan 1 menit 5,4 detik. Namun, di arena dengan rintangan lebih banyak, metode Fuzzy Logic lebih efisien dengan rata-rata waktu 1 menit 12,9 detik, sedangkan metode PID membutuhkan 1 menit 16,8 detik. Penelitian ini menyimpulkan bahwa meskipun masing-masing metode kendali memiliki keunggulan dan keterbatasannya, kombinasi keduanya dapat menawarkan solusi yang lebih adaptif dan efisien dalam lingkungan yang dinamis. Hasil penelitian ini memberikan kontribusi signifikan dalam pengembangan teknologi robotika dan aplikasi praktis di berbagai sektor industri.


Full Text:

PDF

References


Alia, L. S. (2022). Simulation Understanding Line Follower Robot C Program with Webots. IJEERE : Indonesian Journal of Electrical Engineering and Renewable Energy, 2(1), 7–18. https://doi.org/10.57152/ijeere.v2i1.106

Aziz, A. F. A. (2020). Design of Traffic Signal Control Systems Based on Fuzzy Control. Acta Electronica Malaysia, 4(1), 24–27. https://doi.org/10.26480/aem.01.2020.24.27

Balatti, P., Kanoulas, D., Tsagarakis, N., & Ajoudani, A. (2020). A Method for Autonomous Robotic Manipulation Through Exploratory Interactions with Uncertain Environments. Autonomous Robots, 44, 1395–1410. https://doi.org/10.1007/s10514-020-09933-w

Boobalan, S., Gobinath, S., Dharmalingam, A., Jayaprakash, A., Poovarasan, M., & Poovendan, K. (2020). An Integrated IoT LabVIEW Based Fuzzy-PLC Controller for Automation of Boiler. IOP Conference Series: Materials Science and Engineering, 937, 012049. https://doi.org/10.1088/1757-899X/937/1/012049

Cai, X., Cen, Y., Baranski, M., & Müller, D. (2020). Using genetic algorithm for optimizing fuzzy logic controller for mode-based control algorithms of building automation systems. 28th Mediterranean Conference on Control and Automation (MED), 452–457. https://doi.org/10.1109/MED48518.2020.9183363

Gashi, F., Abuibaid, K., Ruskowski, M., & Wagner, A. (2024). Model Predictive Control Based Reference Generation for Optimal Proportional Integral Derivative Control. 32nd Mediterranean Conference on Control and Automation (MED), 518–524. https://doi.org/10.1109/MED61351.2024.10566273

Palčič, I., & Prester, J. (2024). Effect of Usage of Industrial Robots on Quality, Labor Productivity, Exports and Environment. Sustainability, 16(18), 8098. https://doi.org/10.3390/su16188098

Pan, Y., Li, Q., Liang, H., & Lam, H.-K. (2022). A Novel Mixed Control Approach for Fuzzy Systems via Membership Functions Online Learning Policy. IEEE Transactions on Fuzzy Systems, 30(9), 3812–3822. https://doi.org/10.1109/TFUZZ.2021.3130201

Perez-Grau, F. J., Dios, J. R. M., Paneque, J. L., Acevedo, J. J., Torres-González, A., Viguria, A., Astorga, J. R., & Ollero, A. (2021). Introducing autonomous aerial robots in industrial manufacturing. Journal of Manufacturing Systems, 60, 312–324. https://doi.org/10.1016/j.jmsy.2021.06.008

Shaheen, O., El-Nagar, A. M., El-Bardini, M., & El-Rabaie, N. M. (2020). Stable adaptive probabilistic Takagi–Sugeno–Kang fuzzy controller for dynamic systems with uncertainties. ISA Transactions, 98, 271–283. https://doi.org/10.1016/j.isatra.2019.08.035

Shirien, Sandhya, & Nisha G. (2022). Fuzzy Logic Controller Based BLDC Motor Control for Propulsion Application. IEEE International Power and Renewable Energy Conference (IPRECON), 1–6. https://doi.org/10.1109/IPRECON55716.2022.10059505

Sholehudin. (2022). Inovasi Terbaru Dalam Robotika: Tantangan dan Peluang di Era Digital. Jurnal Repoteknologi, 2(4). http://repoteknologi.id/index.php/repoteknologi/article/view/126

Wang, Y., Zhang, P., You, Y., & He, Y. (2023). A Robot Autonomous Control System for Multi-task Complex Manipulations. 42nd Chinese Control Conference (CCC). https://doi.org/10.23919/CCC58697.2023.10240047

Wijayathunga, L., Rassau, A., & Chai, D. (2023). Challenges and Solutions for Autonomous Ground Robot Scene Understanding and Navigation in Unstructured Outdoor Environments: A Review. Applied Sciences, 13, 9877. https://doi.org/10.3390/app13179877

Yusufadz, A. C., & Rosyidin, A. (2022). Analisis Penerapan Artificial Intelligence dan Robotik Pada Industri Manufaktur Indonesia Dalam Menghadapi Era Industri 4.0. Prosiding Seminar Nasional Teknologi Industri (SNTI), 9(1), 227–232. https://journal.atim.ac.id/index.php/prosiding/article/view/330




DOI: https://doi.org/10.56486/jeis.vol5no1.557

Article Metrics

Abstract view : 145 times
PDF - 61 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fauzan Rais Saputra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TERINDEKS OLEH :

Â