PENERAPAN RULE-BASED EXPERT SYSTEM UNTUK REKOMENDASI UMPAN BERDASARKAN SPESIES IKAN DAN KONDISI PERAIRAN DI LAUT MANADO
Abstract
Capture fisheries are an important economic sector for coastal communities in the Manado region. One of the key factors influencing fishing success is the selection of appropriate bait. Choosing the correct bait can significantly improve catch efficiency, while incorrect bait selection may reduce fishing effectiveness. In practice, bait selection among local fishermen still relies heavily on traditional knowledge passed down orally or gained through personal experience, which is not always easily accessible to novice fishermen. This study aims to develop a Rule-Based Expert System that provides bait selection recommendations to support fishing activities around Manado. The system was designed by incorporating practical knowledge from experienced fishermen obtained through semi-structured interviews and field observations. The parameters used in the system include target fish species, water depth, sea current strength, and season. The Rule base was constructed based on various combinations of these parameters and implemented as a web-based application using PHP programming language. Testing results show that the system achieves a 90% accuracy rate in providing recommendations based on validation conducted with local fishermen. Further evaluation indicates that the system is considered easy to use and beneficial as a decision-support tool for bait selection, particularly for novice fishermen. Additionally, the fishermen provided positive feedback for future system enhancements, suggesting the inclusion of additional contextual factors such as weather conditions and lunar phases. In conclusion, the developed Rule-Based Expert System has significant potential to support more efficient and sustainable fishing practices in the waters around Manado and facilitate knowledge transfer to the next generation of fishermen.
Perikanan tangkap merupakan sektor ekonomi yang sangat penting bagi masyarakat pesisir di wilayah Manado. Salah satu faktor kunci yang mempengaruhi hasil tangkapan ikan adalah pemilihan umpan yang tepat. Umpan yang sesuai dapat meningkatkan peluang keberhasilan penangkapan, sementara pemilihan umpan yang kurang sesuai dapat menyebabkan penurunan efisiensi usaha penangkapan. Dalam praktiknya, pemilihan umpan oleh nelayan di wilayah ini masih sangat bergantung pada pengetahuan tradisional yang diperoleh melalui pengalaman pribadi atau diwariskan secara lisan, sehingga tidak selalu mudah diakses oleh nelayan pemula. Penelitian ini bertujuan untuk mengembangkan sebuah Rule-Based Expert System yang dapat memberikan rekomendasi pemilihan umpan untuk mendukung kegiatan perikanan tangkap di perairan sekitar Manado. Sistem dirancang dengan mengadopsi pengetahuan praktis dari nelayan berpengalaman, yang diperoleh melalui proses wawancara semi-terstruktur dan observasi lapangan. Parameter yang digunakan dalam sistem meliputi spesies ikan target, kedalaman perairan, arus laut, dan musim. Rule base disusun berdasarkan kombinasi keempat parameter tersebut, kemudian diimplementasikan dalam sebuah aplikasi berbasis web menggunakan bahasa pemrograman PHP. Hasil pengujian menunjukkan bahwa sistem mampu memberikan tingkat kesesuaian rekomendasi sebesar 90%, berdasarkan validasi yang dilakukan bersama nelayan di wilayah Manado. Evaluasi lebih lanjut menunjukkan bahwa sistem ini dinilai mudah digunakan, serta bermanfaat sebagai alat bantu dalam proses pengambilan keputusan terkait pemilihan umpan, terutama bagi nelayan pemula. Selain itu, nelayan memberikan masukan positif terkait pengembangan sistem ke depan, termasuk penambahan faktor-faktor lain seperti kondisi cuaca dan fase bulan. Dengan demikian, Rule-Based Expert System yang dikembangkan dalam penelitian ini memiliki potensi besar untuk mendukung perikanan tangkap yang lebih efisien dan berkelanjutan di perairan sekitar Manado, serta membantu proses transfer pengetahuan kepada generasi nelayan baru
Full Text:
PDFReferences
Alenezi, M., & Akour, M. (2025). AI-Driven Innovations in Software Engineering: A Review of Current Practices and Future Directions. Applied Sciences, 15. https://doi.org/10.3390/app15031344
Barange, M., Bahri, T., Beveridge, M., Cochrane, K., Funge-Smith, S., & Poulain, F. (2018). Impacts of Climate Change on Fisheries and Aquaculture. Synthesis of Current Knowledge, Adaptation, and Mitigation Options.
de Sousa, W. L., Zacardi, D. M., & Vieira, T. A. (2022). Traditional Ecological Knowledge of Fishermen: People Contributing towards Environmental Preservation. In Sustainability (Vol. 14, Issue 9). https://doi.org/10.3390/su14094899
Deepananda, K. H. M., Amarasinghe, U., Jayasinghe-Mudalige, U., & Berkes, F. (2016). Stilt fisher knowledge in southern Sri Lanka as an expert system: A strategy towards co-management. Fisheries Research, 174, 288–297. https://doi.org/10.1016/j.fishres.2015.10.028
Egessa, M., Ngetich, C., & Munga, C. (2024). M-fisheries prototype: Innovating towards evidence-based planning and decision- making in marine fisheries management. Open Access Research Journal of Science and Technology, 11, 25–30. https://doi.org/10.53022/oarjst.2024.11.1.0059
Eighani, M., Paighambari, S. Y., Herrmann, B., & Feekings, J. (2018). Effect of bait type and size on catch efficiency of narrow-barred Spanish mackerel (Scomberomorus commerson) in the Persian Gulf handline fisheries. Fisheries Research, 199, 32–35. https://doi.org/https://doi.org/10.1016/j.fishres.2017.11.023
Hatzilygeroudis, I., Dimitropoulos, K., Kovas, K., & Theodorou, J. (2023). Expert Systems for Farmed Fish Disease Diagnosis: An Overview and a Proposal. https://doi.org/10.20944/preprints202305.0298.v1
Jones, B., Santos, R. O., James, W. R., Costa, S., Adams, A., Boucek, R., Coals, L., Cullen-Unsworth, L., Shephard, S., & Rehage, J. (2024). New directions for Indigenous and local knowledge research and application in fisheries science: Lessons from a systematic review. Fish and Fisheries, 25. https://doi.org/10.1111/faf.12831
Kapoor, R., Bedi, S., & Singh, Y. (2025). Enhancing Inference Capability in Rule-Based Expert Systems for Disease Diagnosis: Advanced Rule Promotion Methodology (pp. 337–346). https://doi.org/10.1007/978-981-96-3381-4_28
Kelly, C., Michelsen, F., Reite, K., Kolding, J., Varpe, Ø., Berset, A., & Alver, M. (2022). Capturing big fisheries data: Integrating fishers’ knowledge in a web-based decision support tool. Frontiers in Marine Science, 9, 1051879. https://doi.org/10.3389/fmars.2022.1051879
Khan, S. M. (2023). Software Prototype Used in Software Development. https://doi.org/10.13140/RG.2.2.10182.04163
Kovas, K., Hatzilygeroudis, I., Dimitropoulos, K., Spiliopoulos, G., Poulos, K., Abatzidou, E., Aravanis, T., Ilias, A., Kanlis, G., & Theodorou, J. (2023). Using Level-Based Multiple Reasoning in a Web-Based Intelligent System for the Diagnosis of Farmed Fish Diseases. Applied Sciences, 13, 13059. https://doi.org/10.3390/app132413059
M., A., & Mariappan, K. (2020). Expert System and Its Application in Fisheries Sector (pp. 88–115).
Mahaji, T., Harahap, A. U., & Wicaksana, K. (2024). Pemberdayaan Pemuda Pesisir: Manajemen Menjaga Kelestarian Sumber Daya Laut (1st ed.). PT. Pena Persada Kerta Utama.
Mandal, A., Banerjee, M., & Ghosh, A. (2025). The Significance of Artificial Intelligence (AI) in Fishing Crafts and Gears. 04, 44–58. https://doi.org/10.5281/zenodo.14698633
Mohale, H., Narsale, S., Kadam, R., Patekar, P., Sheikh, S., Mansukhbhai, C., Kirtikumar, P., & Baraiya, R. (2024). Artificial Intelligence in Fisheries and Aquaculture: Enhancing Sustainability and Productivity. Archives of Current Research International, 24, 106–123. https://doi.org/10.9734/acri/2024/v24i3650
Nababa, A., Sani, S., & Umaru, J. (2025). Study Exploring the Key Challenges of Climate Change and Its Effects on Fisheries: A Review. Records of Chemical Sciences, 4, 99_114. https://doi.org/10.33003/frscs_2025_0401/08
Riyanto, E., Prasetyo, E., Zainal, R., Pubaningtyas, R., Setyatama, F., Herulambang, W., Alim, S., & Tias, R. (2023). Design of Expert System Diagnosis of Catfish Disease with Forward Chaining Method. JEECS (Journal of Electrical Engineering and Computer Sciences), 7, 1215–1222. https://doi.org/10.54732/jeecs.v7i1.223
Samarasinghe Gunasekara, S., Bandaranayake, H., & Jayasinghe, P. (2024). Influence of Bait Types on Bigeye Tuna Catch Rates in Sri Lanka.
Santos, C., Rosa, D., Gonçalves, J., & Coelho, R. (2023). A review of reported effects of pelagic longline fishing gear configurations on target, bycatch and vulnerable species. Aquatic Conservation: Marine and Freshwater Ecosystems, 34. https://doi.org/10.1002/aqc.4027
Sintaro, S. (2022). Permodelan Sistem Informasi Pembelian dan Penjualan Berbasis Website. Jurnal Ilmiah Informatika Dan Ilmu Komputer (JIMA-ILKOM), 1(1), 25–32.
Sintaro, S., Pandiangan, D., Nainggolan, N., Johanes, A. B., Van Gobel, A. R., & Nainggolan, V. P. G. (2023). Pembuatan Website Sebagai Media Informasi Digital pada Biovina Herbal. Journal of Social Sciences and Technology for Community Service (JSSTCS), 4(2), 285–289.
Sintaro, S., Surahman, A., Ngangi, S. C. W., Kalengkongan, W. W., & Johanes, A. B. (2023). Sistem Informasi Pengenalan Kampus dengan Foto 360 Berbasis Website. Journal of Data Science and Information Systems (DIMIS), 1(1), 32–40.
Sun, C., Yang, R., He, W., & Zhu, H. (2022). A novel belief rule base expert system with interval-valued references. Scientific Reports, 12(1), 6786. https://doi.org/10.1038/s41598-022-10636-8
Talukdar, J., Singh, T. P., & Barman, B. (2023). Rule-Based Expert Systems (pp. 145–158). https://doi.org/10.1007/978-981-99-3157-6_8
Zornu, J., Tavornpanich, S., Ali, S., Addo, S., Nyaga, P., Jansen, M., Norheim, K., Brun, E., & Cudjoe, K. (2023). Bridging knowledge gaps in fish health management through education, research, and biosecurity. Frontiers in Sustainable Food Systems, 7. https://doi.org/10.3389/fsufs.2023.1256860
DOI: https://doi.org/10.56486/jris.vol5no2.824
Article Metrics
Abstract view : 31 timesPDF - 11 times
Refbacks
- There are currently no refbacks.
TERINDEKS OLEH :






