RANCANG BANGUN APLIKASI MONITORING STATUS GIZI ANAK MENGGUNAKAN ALGORITMA C4.5

Andy Dharmalau, Wargijono Utomo, Hari Suryantoro

Abstract


The research aims to design an application for child nutrition monitoring using the C4.5 Algorithm, focusing on measurement data from the Puskesmas in Jati Padang, Pasar Minggu District, South Jakarta. The data used amounted to 291 records over one year, which were processed to determine the nutritional status of children based on the Body Mass Index according to Age (BMI/A). The research methodology uses a quantitative approach with stages including problem analysis, application of the C4.5 algorithm for data classification, and proposed system design. The research results in a prototype of an application for child nutrition monitoring that can classify children's nutrition status with an accuracy level of 38.46%. This research is expected to significantly contribute to the development of more effective and efficient health information systems, improve the efficiency of data delivery to the Directorate of Community Nutrition of the Ministry of Health, and provide accuracy in determining children's nutrition status in real-time. This application is expected to support efforts to address malnutrition in Indonesia and benefit researchers and users in managing children's health data.

Penelitian yang dilakukan ini bertujuan untuk merancang aplikasi monitoring status gizi anak menggunakan Algoritma C4.5, dengan fokus pada data pengukuran dari Puskesmas di Jati Padang, Kecamatan Pasar Minggu, Jakarta Selatan. Data yang digunakan berjumlah 291 record selama satu tahun, yang diolah untuk menentukan status gizi anak berdasarkan Indeks Massa Tubuh menurut Umur (IMT/U). Metodologi penelitian menggunakan pendekatan kuantitatif dengan tahapan mencakup analisis permasalahan, penerapan algoritma C4.5 untuk klasifikasi data, dan perancangan sistem usulan. Hasil penelitian berupa purwarupa Aplikasi monitoring status gizi anak yang mampu mengklasifikasikan status gizi anak dengan tingkat akurasi mencapai 38,46%. Penelitian ini diharapkan berkontribusi terhadap pengembangan sistem informasi kesehatan yang lebih efektif, efisien dan meningkatkan efisiensi pengiriman data ke Direktorat Gizi Masyarakat Kementerian Kesehatan, serta memberikan akurasi dalam penentuan status kondisi gizi anak secara real-time. Aplikasi ini diharapkan dapat mendukung upaya penanganan gizi buruk di Indonesia dan memberikan manfaat bagi peneliti serta pengguna dalam pengelolaan data kesehatan anak.


Full Text:

PDF

References


Adeoya, A. A., Sasaki, H., Fuda, M., Okamoto, T., & Egawa, S. (2022). Child Nutrition in Disaster: A Scoping Review. Tohoku Journal of Experimental Medicine, 256(2), 103–118. https://doi.org/10.1620/tjem.256.103

Bachtiar, L., & Mahradianur, M. (2023). Analisis Data Mining Menggunakan Metode Algoritma C4.5 Menentukan Penerima Bantuan Langsung Tunai. Jurnal Informatika, 10(1), 28–36. https://doi.org/10.31294/inf.v10i1.15115

Dewi, R. C., Rimawati, N., & Purbodjati. (2021). Body mass index, physical activity, and physical fitness of adolescence. Journal of Public Health Research, 10(2), 340–342. https://doi.org/10.4081/jphr.2021.2230

Feichas, F. A., & Seabra, R. D. (2023). Evaluation of Perception of Use of a Gamified Platform from the Student Perspective: An Approach for Studying Unified Modeling Language. Informatics in Education, 22(3), 369–394. https://doi.org/10.15388/infedu.2023.22

Gulzar, K., Ayoob Memon, M., Mohsin, S. M., Aslam, S., Akber, S. M. A., & Nadeem, M. A. (2023). An Efficient Healthcare Data Mining Approach Using Apriori Algorithm: A Case Study of Eye Disorders in Young Adults. Information (Switzerland), 14(4), 1–14. https://doi.org/10.3390/info14040203

Meziane, H., & Ouerdi, N. (2022). A Study of Modelling IoT Security Systems with Unified Modelling Language (UML). International Journal of Advanced Computer Science and Applications, 13(11), 264–277. https://doi.org/10.14569/IJACSA.2022.0131130

Muhamad, M., Windarto, A. P., & Suhada, S. (2019). Penerapan Algoritma C4.5 Pada Klasifikasi Potensi Siswa Drop Out. KOMIK (Konferensi Nasional Teknologi Informasi Dan Komputer), 3(1), 1–8. https://doi.org/10.30865/komik.v3i1.1688

Ningtyas, A. M., & Lubis, I. K. (2018). Literatur Review Permasalahan Privasi Pada Rekam Medis Elektronik. Pseudocode, 5(2), 12–17. https://doi.org/10.33369/pseudocode.5.2.12-17

Pangestu, H. G., Sinaga, R. Y., Ulya, F. Z., Athiyah, U., Muhammad, A. W., & Alameka, F. (2023). Analisis Efisiensi Metode K-Nearest Neighbor dan Forward Chaining Untuk Prediksi Stunting Pada Balita. Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, 18(2), 78. https://doi.org/10.30872/jim.v18i2.10169

Pranata, R., Lim, M. A., Yonas, E., Vania, R., Lukito, A. A., Siswanto, B. B., & Meyer, M. (2021). Body mass index and outcome in patients with COVID-19: A dose–response meta-analysis. Diabetes and Metabolism, 47(2), 101178. https://doi.org/10.1016/j.diabet.2020.07.005

Sánchez, A., Vidal-Silva, C., Mancilla, G., Tupac-Yupanqui, M., & Rubio, J. M. (2023). Sustainable e-Learning by Data Mining—Successful Results in a Chilean University. Sustainability (Switzerland), 15(2), 1–16. https://doi.org/10.3390/su15020895

Supangat, S., Amna, A. R., & Rahmawati, T. (2018). Implementasi Decision Tree C4.5 Untuk Menentukan Status Berat Badan dan Kebutuhan Energi Pada Anak Usia 7-12 Tahun. Teknika, 7(2), 73–78. https://doi.org/10.34148/teknika.v7i2.90




DOI: https://doi.org/10.56486/jris.vol5no1.685

Article Metrics

Abstract view : 59 times
PDF - 34 times

Refbacks

  • There are currently no refbacks.


TERINDEKS OLEH :

Â